Accepted for publication. DOI: 10.1109/IRASET52964.2022.9738158
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Artificial Intelligence for Smart Cities:
Comparing Latency in Edge and Cloud
Computing

Ben Naets' , Willem Raes? , Rembrandt Devillé? ,
Catherine Middag® , Nobby Stevens? , and Ben Minnaert!
1 Odisee University College of Applied Sciences, Ghent, Belgium
2 DRAMCO Research Group, ESAT, Department of Electrical Engineering, KU Leuven, Ghent, Belgium
3 Knowledge centre Al, Erasmus Brussels University college, Brussels, Belgium

Abstract — A smart city collects and uses data to
streamline and improve multiple facets of city life. This
approach is becoming an important strategy to keep cities a
desirable place to live in while keeping them attractive and
beneficial for business. The applications which constitute a
smart city range from traffic to waste management, but are
all dependent on data acquisition and data processing. This
work focuses on the latency difference between edge and
cloud computing for smart cities, which is illustrated by a
real-life example: a dash cam in a car to monitor traffic in
real time. Two scenarios are compared: the first one uses
a single board computer on the edge to process the data
and to realise inference, whereas in the second scenario, the
analysis is done in the cloud, but the result is still returned to
the edge. The results show the benefits and disadvantages of
edge and cloud computing for a smart city environment for
which latency is an important parameter, in particular when
time-sensitive applications are considered such as on-board
capturing of traffic situations.

Keywords — Smart cities, artificial intelligence, cloud, cloud
Computing, Jetson Nano, edge computing, TensorRT

I. INTRODUCTION

Internet of Things sensor networks collect and analyse a
lot of local data, and warn the user in time if action needs
to be taken. A crucial aspect in this process is the location
of the data analysis. One approach that is often used is
to send the raw data in its entirety to a back-end server
for analysis and processing with artificial intelligence (AI)
(Fig. 1a).

In order to be able to closely monitor the process and
warn the user in time, this transmission has to occur
very frequently. There are three major drawbacks to this
approach.

« First, the frequent remote communication results into
a reduced lifespan for the often battery-powered
nodes.

« Secondly, by sending raw data over long distances,
additional delay (latency) is introduced.

o A third disadvantage concerns the high load on
the communication network when the raw data is

This work is supported by Flanders Innovation & Entrepreneurship
VLAIO (TETRA-project HBC.2019.2638 “AlISiBoCo: Artificial Intelli-
gence on Single Board Computers”).

Corresponding author: B.N., email: ben.naets@odisee.be

Cloud computing Edge computing

i B

1x long-range data-transfer
for results and preprocessed data

Multiple long-range
high volume data-transfers:
high energy consumption

Possibility to adjust
Al parameters

— Short-range low energy-consumption

b Edge computing device with Al

Figure 1. (a) Cloud computing: sensors send all their data
frequently to the cloud for processing. (b) Edge computing:
the sensor data is locally aggregated and analysed by
embedded algorithms; only part of the (preprocessed) data is
sent to the cloud.

forwarded.

Because of these reasons and taken into account the
increasing performance of single board computers, the
analysis of data at the edge of the network (“edge com-
puting”) using embedded Al is becoming increasingly im-
portant [1]-[3]. In this configuration, the data is processed
locally, at the device itself (Fig. 1b).

This work compares the latency difference between two
scenarios (cloud versus edge computing) in order to give
insights in the benefits and disadvantages of edge and
cloud computing which can be used when designing time
critical applications such as traffic monitoring in a smart
cities environment.

II. METHODOLOGY

The experiments evaluate the performance of edge
computing and cloud computing in terms of latency for an
image segmentation workload. To achieve this, a camera
recording of a trajectory in an urban environment is made,
capturing multiple real traffic situations (Fig. 2). The
recording is then used as input for the latency evaluation



Figure 2. Raw video image and corresponding segmentation
image.

experiments. In case of edge computing, the locally stored
video file is used as the data source to perform real
time image segmentation. In case of cloud computing, the
node uses an Real Time Streaming Protocol (RTSP) video
stream as input for the real time image segmentation.

A. Segmentation model

Although the cloud environment has the ability to
run more resource intensive models which achieve better
results in regards to performance metrics such as inter-
section over union [4], this study uses the same semantic
segmentation model [5] on both the edge and the cloud
infrastructure since the main goal is to evaluate the latency
disparity between the two configurations.

The segmentation model used for our experiments is a
fully convolutional network with a ResNetl8 backbone
capable of per-pixel classification [6] [7]. This network is
pretrained on the Cityscapes [8] dataset, which consists
of pixel-level labeled images captured from video footage
collected in over 50 German cities and is often used as
a benchmark dataset to understand complex urban street
scenes [4]. Two variants of the segmentation model are
evaluated: a low and high input resolution of 512x256
and 1024x512, respectively. For both edge and cloud
computing nodes, the model is optimised using the
TensorRT framework for the specific target hardware.
After the optimisation procedure, the model can start

real time image segmentation inference.

B. Edge computing setup

A Jetson Nano developer kit [9] is used as the edge
computer and the semantic segmentation network is opti-
mized for local computing using NVIDIA’s TensorRT [10]
to achieve low latency and high throughput. The Ten-
sorRT optimisation process reduces the precision of the
network’s weights while preserving its accuracy and op-
timises the model for the target GPU platform by kernel
auto-tuning (Fig. 3).

Edge

L—E@?
L’: =

Optimized model for
Jetson Nano

=

Figure 3. Overview edge computing configuration.

C. Cloud computing setup

The cloud computing server runs on a Jetson TX2 [11]
which is connected over TCP/IP with the edge device
(Jetson Nano) to stream the video to the cloud. The
semantic segmentation network is identical to the one
running on the edge but is optimised with TensorRT for
the different GPU (Fig. 4).

Edge

B

RSP - TCP/IP

)
= .

Optimized model for
Jetson TX2

Figure 4. Overview cloud computing configuration.

D. Network

Throughout our experiments, the best case scenario
regarding network connectivity is assumed, i.e., a reliable
wired connection with a download and upload speed of
90 Mbps. Although this does not correspond to a current
real life dash cam application, this test configuration is
applied as a benchmark to compare future tests with
mobile network connectivity and to allow for a valid
comparison of the latency difference between cloud and
edge computing. Indeed, using a mobile network would
introduce extra uncertainties depending on the coverage
and network type (3G, 4G, 5G).

E. Evaluation metric

For the edge device, the latency is defined as the time
needed to load an image and compute the segmentation
result using the machine learning model. For the cloud



1.0 9 —— Jetson Nano

0.8 4

0.6

CDF

0.4 1

0.2 1

0.0 1

34 36 38 40 42 44 46 48
Latency (ms)

Figure 5. Cumulative Distribution Function (CDF) of the edge
computing latency with a model resolution of 512x256.

1.0 4| = Jetson Nano
0.8 1
0.6
w
a)
o
0.4 1
0.2 4
0.01
104 106 108 110 112 114 116

Latency (ms)

Figure 6. Cumulative Distribution Function (CDF) of the edge
computing latency with a model resolution of 1024x512.

node, both the total round trip time and the time needed
for computing the result are reported. Note that during
the experiments, the resulting segmented images are not
rendered, i.e., the rendering time is not included into the
latency results.

III. RESULTS AND DISCUSSION

Table I and Table II summarise the results for the edge
and cloud configuration, respectively.

Regarding the edge computing configuration, a per-
centile P50 latency of 40 ms and P95 latency of 43 ms
per frame to process is observed for the Jetson Nano
device in the case of the lower resolution model. This
shows that when the data is computed locally, a very low
spread on the update rate can be obtained. The latency
values for the Jetson Nano increase to a P50 and P95
of 110ms and 115ms, respectively, when applying the
larger resolution model. Due to the larger computational

30 1 _—

20 1

10 A

-10

Latency deviation from median (ms)
o

-30

Jetson Nano Jetson TX2

Hardware

Figure 7. Comparison of the latency deviation for the 512x256
resolution between the edge (Jetson Nano) and cloud (Jetson
TX2) configuration to their respective median values.

complexity, the latency is higher but one can again ob-
serve that the spread on update rate is very low, resulting
in a deterministic inferencing pipeline. The cumulative
distribution functions for the edge configuration for both
resolutions are depicted in Figure 5 and Figure 6.

In the cloud computing configuration, a total P50 and
P95 latency of 175ms and 190 ms, respectively, is ob-
tained at the Jetson TX2 node using the lower resolution
input. Note that the total latency is composed of the
computing and transit time. The required computing time
per frame has a P50 value of 18 ms and a P95 value of
19 ms. The time in transit equals 158 ms and 173 ms for
P50 and P95, respectively, and accounts for more than
90 % of the total time. From these results one can see
that the transit time due to the remote data source has a
significant impact on the latency and determinism of the
inferencing pipeline. The median of the computing time
per frame is significantly lower due to the more advanced
hardware of the Jetson TX2, but the required transmission
over the network and transit time introduce significantly
more jitter in the update rate. This is demonstrated in more
detail in Figure 7 which compares the latency deviation
from both computing nodes to their respective median
values.

For the higher resolution model, the P50 and P95
total latency values on the Jetson TX2 are 175ms and
185 ms, respectively. The median required computing
time increases to 50ms due to the increased compu-
tational complexity. The P50 and P95 times in transit
equal 125 ms and 134 ms, respectively. Again, the time in
transit represents a significant portion (more than 70 %)
of the total latency per processed frame and introduces an
extensive amount of jitter in the inferencing pipeline. The
cumulative distribution functions for the cloud computing
configuration for both resolutions are shown in Figure 8



Table I. EDGE COMPUTING RESULTS

Edge computing
Resolution | Network Transit Jetson Nano Total
P50 P95 P50 P95 P50 P95
512x256 fen-resnet18-cityscapes-512x256 / 40 ms 43 ms 40 ms 43 ms
1024x512 fen-resnet18-cityscapes-1024x512 / 110 ms 115 ms 110 ms 115 ms
Table II. CLOUD COMPUTING RESULTS
Cloud computing
Resolution | Network Transit Jetson TX2 Total
P50 P95 P50 P95 P50 P95
512x256 fen-resnet18-cityscapes-512x256 158 ms 173 ms 18 ms 20 ms 175 ms 190 ms
1024x512 fen-resnet18-cityscapes-1024x512 125 ms 134 ms 50 ms 52 ms 175 ms 185 ms
1.0
20 ——
0.8 é
% 10
£ _l_
0.6 g
% £ gl ] |
[v] E 1 1
0.4 % _l_
g —10 1 s
0.2 g N R
-20
0.0 4 —— Jetson-TX2
150 200 250 300 350 400 450 500 Jetson Nano Jetson TX2

Latency (ms)

Figure 8. Cumulative Distribution Function (CDF) of the total
cloud computing latency with a model resolution of 512x256.

1.04
0.8 1
0.6
e
a
o
0.4 4
0.2 1
0.0 — Jetson-TX2
200 250 300 350 400
Latency (ms)

Figure 9. Cumulative Distribution Function (CDF) of the total
cloud computing latency with a model resolution of 1024x512.

and Figure 9.

Finally, the latency deviation with respect to the median
values of both hardware platforms for the larger model
resolution is depicted in Figure 10.

Hardware

Figure 10. Comparison of the latency deviation for the
1024x512 resolution between the edge (Jetson Nano) and cloud
(Jetson TX2) configuration to their respective median values.

IV. CONCLUSION AND FUTURE WORK

An edge computing scenario was compared to a cloud
computing scenario regarding latency for a smart cities
application: image segmentation for a dash cam in a
car to monitor real time traffic. It was experimentally
demonstrated that for this practical scenario, the time
for processing data is significantly lower on the edge
than in the cloud configuration, due to the extra transit
time. Moreover, a very low spread on the update rate
can be obtained. Obviously, the compromise is the lower
computing power available in the edge configuration.

The tests described in this work are intended as a
benchmark to compare further experiments, in which extra
uncertainties will be gradually introduced to determine the
impact of each parameter. First, the wired internet connec-
tion for the cloud computing scenario will be replaced by
a cellular one. Initially, the setup which streams the dash
cam video to the cloud will be stationary to eliminate
roaming and coverage issues of the cellular network.
Afterwards the setup will be placed inside a moving car
to examine the influences of network roaming and blind
spots. In this way, the benefits and disadvantages of edge
and cloud computing for a smart city environment can be



numerically demonstrated for the on-board capturing of
traffic situations.

(1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]

[9]
[10]

[11]

REFERENCES

L. Zhao, J. Wang, J. Liu, and N. Kato, “Optimal edge resource
allocation in iot-based smart cities,” IEEE Network, vol. 33, no. 2,
pp. 30-35, 2019.

C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V.
Vasilakos, “Fog computing for sustainable smart cities: A survey,”
ACM Computing Surveys (CSUR), vol. 50, no. 3, pp. 1-43, 2017.
L. U. Khan, I. Yaqoob, N. H. Tran, S. A. Kazmi, T. N. Dang, and
C. S. Hong, “Edge-computing-enabled smart cities: A comprehen-
sive survey,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
10200-10232, 2020.

Cityscapes benchmark suite. [Online]. Avail-
able: https://www.cityscapes-dataset.com/benchmarks/#pixel-
level-results

Jetson inference: Deploying deep learning. [Online]. Available:
https://github.com/dusty-nv/jetson-inference

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset for semantic urban scene understanding,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2016, pp. 3213-3223.

Jetson nano developer kit. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
Nvidia tensorrt. [Online]. Available:

https://developer.nvidia.com/tensorrt
Jetson tx2. [Online]. Available: https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-tx2



