
 1

M. Burgelman, B. Minnaert, Including excitons in semiconductor solar cell modelling, Thin Solid Films, Volumes 
511–512, 26 July 2006, Pages 214-218, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2005.12.054. 
(http://www.sciencedirect.com/science/article/pii/S0040609005023941) 

  

INCLUDING EXCITONS IN SEMICONDUCTOR SOLAR CELL MODELLING 

 

M. Burgelman and B. Minnaert 

University of Gent, Electronics and Information Systems (ELIS),  

Pietersnieuwstraat 41, B-9000 Gent, Belgium 

 

 

Abstract  

Excitonic effects are introduced in standard semiconductor device modelling of solar cells. 

Previous work by the groups of Green and of Zhang is extended here to also include field 

dependent exciton dissociation in the space charge layer (SCL) of a n+p diode, and exciton 

surface dissociation or charge transfer at the contact or at the junction. A clear result is that it 

is possible to apply the standard semiconductor device modelling frame to situations where 

excitons are dominant. Even when there is only exciton (and no free eh) generation an almost 

ideal short circuit current can be collected when there is sufficient exciton dissociation, either 

at an interface, or in the bulk, or in the SCL. The possible application of this model to organic 

solar cells is briefly explored. 
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1. Introduction 

Excitons are marginally important in classical semiconductor device physics, and their 

treatment is not included in standard solar cell modelling. However, in organic 

semiconductors and solar cells, the role of excitons is essential, as the primary effect of light 

absorption is exciton generation, and free electrons and holes are created by exciton 

dissociation. While there is a vast literature on the exciton related materials properties in 

organic solar cells, a quantitative description which relates excitonic phenomena to the final 

solar cell output is lacking. First steps to include excitons in inorganic semiconductor solar 

cell modelling were presented by Green [1][2][3] and Zhang [4] for silicon solar cells; later, 

other inorganic solar cells where studied with the same model, e.g. CdTe in [5]. This model 

was restricted to an analytic treatment of the quasi-neutral p-region (QNR) of a one sided n+p 

junction, and exciton dissociation and recombination was considered only in the p-bulk, and 

assumed to be uniform. We will here extend this model to cover more realistic solar cell 

structures: we will include the space charge region (SCL) and the non-uniform bulk 

dissociation of the excitons therein (caused by field enhanced dissociation), and the 

occurrence of exciton surface dissociation and recombination at the contacts and at the 

junction. As we assume a preset hole concentration throughout the cell, and a given electric 

field in the SCL, our model is still not general, but it covers most real semiconductor 

situations. The applicability of this extended model to organic solar cells will be briefly 

discussed. 

 

2. Solar cell modelling including excitons  

We will denote electrons, holes and excitons with the subscript e, h and x, respectively. We 

will limit ourselves to a one-dimensional analysis. 

2.1 Exciton transport and dynamics 
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The total optical absorption G is due to the generation of free electron-hole pairs (fraction feh) 

and of excitons (fraction fx). Other absorption mechanisms will be neglected, thus feh + fx = 1. 

In inorganic semiconductors, fx  0, except at low temperatures in a narrow wavelength region 

around the band gap energy, g gh E  ˆ . In organic materials, the dominant absorption 

is by excitons, and hence fx  1 for all absorbed wavelengths. We take a simple 

monomolecular form for the direct recombination (or annihilation) of excitons: 
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where x is the exciton lifetime. Excitons also can dissociate and convert to a free electron- 

hole pair, with a net conversion rate Cx/eh (this corresponds to –Ueh/x in the notation of [1] and 

[4]) 

  *
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where b (in cm3s-1) describes the strength of the exciton binding and n* is an appropriate 

constant, with the dimension of concentration (thus in cm-3). In equilibrium, detailed balance 

requires this net rate Cx/eh to be zero; this defines the equilibrium exciton concentration 

2 *
0x in n n , occurring also in Eq. (1). Since excitons do not carry charge, their transport is 

by diffusion: 
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2.2 Basic model 

In the basic model of Green [1] and Zhang [4], only minority carriers in the quasi-neutral p-

region of a one-sided n+p junction are considered: the problem is reduced to finding the 

electron concentration ne(x) and the exciton concentration nx(x) in the range 0  x  x0 in the 

structure of Fig. 1. Since the QNR is field-free, also the electron current is solely by diffusion, 

and the problem is formulated as a set of two coupled differential equations for the two 

unknown functions ne(x) and nx(x): 
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where we note that the exciton to eh-pair conversion is a generation term for the electrons and 

a recombination term for the excitons. In [1] and [4], a simple low-level injection 

approximation is used for the electron recombination Ueh: 
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and NA is the uniform acceptor doping in the p-QNR. Further, it is assumed that the hole 

concentration (needed in Eq. (2)) is constant in the p-QNR, nh = NA, and that the binding 

parameter b is constant over the field-free QNR. Under these assumptions, Eqs. (4) and (5) 

are linear and can be solved analytically with standard techniques [1]. As an infinitely wide p-

QNR is assumed in [1] and [4], both ne(x) and nx(x) tend to zero when x  , and no special 

boundary conditions are needed at the p-contact. At the SCL-edge (x = 0), the usual Shockley 

boundary condition for electrons is used,    00 expe en n qV kT , where V is the applied 

voltage. For the excitons, Green [1] uses   00x xn n  corresponding to zero exciton 

recombination at the SCL-edge (Eq. (1)), whilst Zhang [4] uses 

     *
00 0 expx e A xn n N n n qV kT  , corresponding to zero exciton to eh conversion at x 

= 0 (Eq. (2)). Both compute the electric current J(V) in the diode by summing the electron and 

exciton particle current at the edge of the SCL: 

      0; 0;e xJ V q J x V J x V       (7) 

The appropriateness of these boundary conditions will be discussed in the next section. 

2.3 Extensions to the basic model 

Eq. (7) implicitly assumes that the current in the diode is dominated by the electrons in the p-

QNR (which holds for a one-sided n+p junction), and that all excitons in the SCL convert to 
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free eh pairs, whose electron contributes to the current. In order to check out this latter 

assumption, one has to extend the Green-Zhang model to include the SCL. To include drift of 

electrons in the SCL, Eq. (4) has to be replaced by 

   
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Also, the recombination Ueh no longer takes the simple form of Eq. (6), but should be 

replaced by a Shockley-Read-Hall expression, e.g.  
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where we assumed for simplicity an equal lifetime for electrons and holes, and one trap level 

at midgap. Due to this Eq. (9), the set of differential equations (8) and (5) becomes non-linear. 

Also, the electric field E(x) is related to the electric charge by the Poisson equation. These two 

complications preclude an analytic treatment, and the problem has to be solved numerically. 

To avoid needless numerical complications, we confine our attention to electrons and excitons 

only (assuming a constant EFp also in the SCL, thus for -W  x  x0), and we assume a preset 

field distribution E(x)  

     0, SCL: 0 and 0, QNR: 0m
x

E x E W x E x x x
W

        (10) 

where the maximum field Em and the depletion width W follow from the standard abrupt 

depletion approximation, e.g. [6]. With these simplifying assumptions, the electrostatic 

potential (x) and the hole concentration nh(x) are easily calculated.  If the assumptions were 

relaxed, one would have to solve a set of four differential equations for the concentrations to 

find ne(x), nh(x), nx(x) and (x). 

Our model, though still containing simplifications, allows studying effects that were neglected 

in the basic model. We model the field enhancement of exciton dissociation (e.g. [7]) by 

introducing a non-uniform binding parameter b in the SCL: 
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    b x b E x     (11) 

Next, we treat the boundary conditions more carefully. The electron concentration at the 

junction is set to the donor density in the n+ region: ne(-W) = ND. For the other boundaries, we 

relate the particle current to the surface recombination and conversion. Thus, e.g. at x = x0: 

        0 0 0 0 1e e e e s x xJ x S n x n b n x n     (12) 

        0 0 0 0 1x x x x s x xJ x S n x n b n x n     (13) 

Here Se and Sx are the normal definitions for surface recombination velocity. E.g. Se   

corresponds to an ohmic contact, and Se = 0 to a perfectly passivated surface. In the absence 

of the conversion terms in bs, one sees that Sx = 0 is appropriate for excitons, since we assume 

that an exciton cannot as such pass a semiconductor-metal contact. The terms in bs describe a 

simple form of surface conversion of excitons to free eh pairs: this term is a generation term 

for electrons, and a recombination term for excitons. Normally we expect nx1 = nx0, the 

equilibrium exciton concentration, but the more general formulation allows e.g. to totally 

exclude the ‘back reaction’, i.e. surface association of eh pairs to excitons, by simply putting 

nx1 = 0. In our simplification of the ‘no holes-diode’, the terms in bs can also describe charge 

transfer: surface dissociation of the exciton to a free electron in the p-semiconductor and a 

hole transferred to the material contacting the semiconductor at x = 0. At the n+p junction, 

thus at x = -W, we take a boundary condition for the excitons like Eq. (13). 

2.4 Numerical solution 

The set of differential equations (8) and (5) and the boundary conditions (12) and (13) are 

discretised with the ‘exponentially fitted scheme’ [8], and solved with the Newton-Raphson 

method. Since the electron equation (8) depends on the exciton concentration nx, and the 

exciton equation (5) depends on the electron concentration ne via the conversion term Cx/eh, a 

Gummel iteration scheme [8] between the two equations is applied. The boundary conditions 

(12) and (13) need special care in case of a high surface conversion velocity bs  vth, since 

they reduce to one single equation nx(x0) = nx1 when bs   (indeed, the thermal velocity vth 
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has to be considered as an ‘infinitely high’ value of the surface velocities Se, Sx and bs). A 

second, independent boundary condition however can be found by eliminating bs from (12) 

and (13): 

          0 0 0 0 0 0 0e x
e e e x x x e x

dn dn
S n x n S n x n D x D x

dx dx
       (14) 

The assumption of a non-uniform b(x) does not complicate the numerical implementation. 

Care is needed to define the discretisation mesh, since there can be a large difference in size 

between the SCL width W, the QNR width x0 and the absorption depth 1/. 

 

3. Results and discussion 

Our final goal is to create a numerical model based on standard semiconductor physics, which 

is applicable to organic solar cells. Therefore we check whether a full short circuit current 

density (i.e. corresponding to the illumination intensity; in Fig. 2,   0, and G0 is adjusted to 

set JLideal = 20 mA/cm2) can be obtained when the light is generating excitons only, thus if fx = 

1 and fe = 0. This can only be the case if there is an appreciable exciton to eh conversion rate 

at some place in the cell. In Fig. 2, JL is plotted for some exciton dissociation parameters. For 

surface dissociation at the contact (x = x0), we varied bs between bslow = 10-2 cms-1 and bshigh = 

107 cms-1
. For homogeneous bulk dissociation we varied b between blow = 10-16 cm3s-1 and 

bhigh = 10-7 cm3s-1
. For field enhanced bulk dissociation, we kept b = blow in the QNR, and 

assumed an exponential dependence    0expb E A E E  in the SCL; the constants A and E0 

were chosen to set b(0) = blow, and b(-W) = bmax, and bmax was varied from blow to bhigh. Fig. 2 

clearly proves that a decent JL is obtained as soon as one of the exciton dissociation 

parameters is high enough. The threshold values are approximately: bs = 104 cms-1 for surface 

dissociation, b = 10-10 cm3s-1 for uniform bulk dissociation, and bmax = 10-8 cm3s-1 for our 

assumed form of field enhanced dissociation in the SCL. These threshold values apply to the 

case where the other dissociation parameters have their low value, thus being inactive. For 
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none of the curves, the ideal short circuit current is reached. This is due to a too low value of 

the diffusion lengths, compared to the cell thickness. In Fig. 3, the curves are recalculated for 

a hypothetical case with very long diffusion lengths Le = Lx = 1000 m. This clearly 

illustrates that JLideal is reached as soon as one of the dissociation mechanisms is strong 

enough. The threshold values obviously depend on Le and Lx. The influence of the diffusion 

lengths Le and Lx is further illustrated in Fig. 4, where both are varied in case that only the 

exciton surface dissociation is high (bs = 107 cms-1), and the bulk dissociation is low (uniform 

b = 10-16 cm3s-1 in SCL and QNR). It can be seen on Fig. 4 that both Le and Lx must be rather 

high, i.e. a few times the diode QNR thickness x0, to obtain the ideal short circuit current 

JLideal. This is plausible, since the excitons generated in the SCL and QNR must first diffuse to 

the back contact at x0, where they dissociate, and then, as electrons, diffuse back to the SCL to 

be collected and contribute to the current. For the parameters used in Fig. 4, the electron 

diffusion is slightly more critical than the exciton diffusion. This applies to the situation of 

Fig. 4, where the exciton dissociation occurs at x = x0; the arguments have to be adapted 

slightly when it occurs in the bulk, or near the junction (x = 0) (no illustration).  

 

4. Possible application to organic solar cells 

An obvious difference between inorganic and organic semiconductors is the exciton binding 

energy : it is small (  25 meV  kT at room temperature) for e.g. Si, but substantial larger 

for organic materials (e.g.  300 meV  12 kT). As a result, in organics, the exciton is more 

stable: excitons are the particles generated by illumination, and they only dissociate to free 

carriers in a high field region, or at the contact with a suitable neighbour molecule, where the 

one of the carriers is injected (‘transferred’). These phenomena are described in our model by 

a field dependent bulk dissociation constant b(E) and by a surface dissociation rate bs. 

The increased value of  has a large influence on the other exciton related parameters, as 

suggested in [1][4]: the parameter n* in Eq. (2) is thermally activated with , and thus would 
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decrease, at room temperature, by a factor of about e11  6 104, and the equilibrium exciton 

concentration nx0 would increase with the same factor. The enhancement of the bulk 

dissociation in an electric field is well documented (e.g. it increases with one or two orders of 

magnitude when E increases from 105 V/cm to 106 V/cm [7]), and also is the enhanced 

transfer of charge from an exciton dissociating at the tangent point of two neighbouring 

molecules [7]. However these phenomena are treated in different terms, and it is not possible 

to extract suitable values of the parameters b(E) and bs in organic molecules. Therefore we 

kept these as running parameters, to show their influence in qualitative terms. 

The nanometer size and the complicated geometry or morphology in bulk heterojunction solar 

cells constitutes a major obstacle to apply standard semiconductor device modelling to 

organic solar cells. One way out is to treat this cell as an infinite network of small, nanometer 

sized ‘unit cells’, as was done in [9] for solar cells based on nano-structured TiO2. It can be 

expected that the major conclusion of our work on planar semiconductor cells will remain 

valid: the cells will work when there is enough exciton dissociation (wherever this be in the 

cell) and when both the electron and the exciton diffusion lengths exceed the unit cell 

thickness. There are indications that Lx can be very small in organic materials (down to a few 

nm), and thus the size of the unit cell, defined by the morphology of the donor/acceptor blend, 

will be extremely important. Another way to model bulk heterojunction solar cells is to treat 

the blend as one ‘effective medium’ (e.g. [10]). The surface dissociation bs in the nano-units 

that constitute the effective medium, will translate into an effective bulk dissociation rate b. 

The framework to include the exciton generation and dissociation effects, including the field 

dependence b(E), has been given in the previous section. Both approaches, the network 

approach and the effective medium approach, are equivalent when suitable parameters are 

chosen [11]. The effective medium approach has the advantage that it can be directly 

implemented (but for the exciton effects, at present) in a standard solar cell device simulation 

programme like SCAPS [12]. 



 10

 

5. Conclusions 

In this work, we extended the standard semiconductor device modelling of solar cells to 

include excitonic effects. The work of Green and Zang was extended to also include field 

dependent exciton dissociation in the SCL, and surface dissociation or charge transfer at the 

interfaces. Our numerical simulations for Si cells show that the cells can work decently, even 

if the light generates only excitons and no free eh pairs. The conditions are that there is 

enough exciton dissociation (wherever this is in the cell) and that both the electron and the 

exciton diffusion lengths exceed the unit cell thickness. This model is applicable to organic 

bulk heterojunction solar cells, provided that suitable values for the parameters involved can 

be found. 
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Figure captions 

Fig. 1 Schematics of a one-sided p+n-junction. The space charge layer (SCL) extends from 

x = -W to x = 0. The quasi-neutral region (QNR) extends from x = 0 to x = x0.  

Fig. 2 Short circuit current under uniform illumination (0), generating excitons only (fx 

= 1), for varying exciton dissociation parameters: surface dissociation at contact bs: 

low = 10-2 cms-1, high = 107 cms-1; bulk dissociation b: low = 10-16 cm3s-1, high = 10-

7 cm3s-1; field enhanced dissociation b(E) in SCL: b = blow for x > 0 and 

exponentially increasing towards junction (x = -W). Curve (1): b varying and bs = 

low. Curve (2): b varying and bs = high. Curve (3): b(E) varying and bs = low. Curve 

(4): bs varying and b = low. Curve (5): bs varying and b = high. The horizontal axis is 

normalised to the high value of the varying parameter. Other parameters are: Le = Lx 

= x0 = 50 m and Se = Sx = 0. 

Fig. 3 Short circuit current under uniform illumination, equivalent to JLideal = 20 mA/cm2. 

The diffusion lengths are: Le = Lx = 1000 m. All other parameters and the labelling 

of the curves are as in Fig. 2. 

Fig. 4 Influence on JL of the diffusion lengths Le and Lx. The exciton surface dissociation at 

x = x0 is high (bs = 107 cm/s), and the bulk dissociation is low (uniform b = 10-16 

cm3/s in SCL and QNR). The other parameters are as in Fig. 2 and in Fig. 3. Curve 

(1): Le varying and Lx = 10 m. Curve (2): Le varying and Lx = 1000 m. Curve (3): 

Lx varying and Le = 10 m. Curve (4): Lx varying and Le = 1000 m. 
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Figure 1 
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Figure 2 
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Figure 3 
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